Respuesta :

Answer:

[tex]x=-1,\frac{5}{7}[/tex]

Step-by-step explanation:

1) Split the second term in [tex]7{x}^{2}+2x-5[/tex] into two terms.

1 - Multiply the coefficient of the first term by the constant term.

[tex]7\times -5=-35[/tex]

2 - Ask: Which two numbers add up to 2 and multiply to -35?

7 and -5.

3 - Split 2x as the sum of 7x and -5x.

[tex]7x^2+7x-5x-5[/tex]

2)  Factor out common terms in the first two terms, then in the last two terms.

[tex]7x(x+1)-5(x+1)=0[/tex]

3) Factor out the common term x+1.

[tex](x+1)(7x-5)=0[/tex]

4) Solve for x.

1 - Ask: When will (x+1)(7x-5) equal zero?

When x + 1 0 or 7x-5=0

2 - Solve each of the 2 equations above.

[tex]x=-1,\frac{5}{7}[/tex]

[tex]\huge\text{Hey there!}[/tex]

[tex]\huge\textbf{What are the quadratic formulas?}[/tex]

[tex]\bullet\rm{\ \dfrac{-b \pm \sqrt{b^2 - 4ac}}{2a}}[/tex]

[tex]\bullet\rm{\ ax^2 + bx + c = 0}[/tex]

[tex]\huge\textbf{What are we solving for?}[/tex]

[tex]\rm{7x^2 + 2x - 5 = 0}[/tex]

[tex]\huge\textbf{What do we have to do?}[/tex]

[tex]\rm{7x^2 + 2x - 5 = 0}[/tex]

[tex]\huge\textbf{Factor the LEFT side of the given}\\\\\huge\textbf{equation:}[/tex]

[tex]\rm{(7x - 5)(x + 1) = 0}[/tex]

[tex]\rm{(7x - 5) \times (x + 1) = 0}[/tex]

[tex]\huge\textbf{Set 0 to the factors:}[/tex]

[tex]\rm{7x - 5 = 0\ or\ x + 1 = 0}[/tex]

[tex]\huge\textbf{Simplify it:}[/tex]

[tex]\rm{x = \dfrac{5}{7}\ or\ x = -1}[/tex]

[tex]\huge\textbf{Therefore, your answer should be:}[/tex]

[tex]\huge\boxed{\frak{\mathsf x = \dfrac{5}{7}\ or\ \mathsf{x} = -1}}\huge\checkmark[/tex]

[tex]\huge\text{Good luck on your assignment \& enjoy your day!}[/tex]

~[tex]\frak{Amphitrite1040:)}[/tex]