Respuesta :

The derivative of the function [tex]f(x)=5^{2x}[/tex] is [tex]\frac{df}{dx} =2ln5(5^{2x})[/tex]

Finding the derivative of a function

The derivative of a function f(x) is the ratio of the change in f(x) to the change in x

The given function is:

[tex]f(x)=5^{2x}[/tex]

Let u = 2x

Find the derivative of u. That is, du/dx

du/dx = 2

f(x) = 5^u

[tex]\frac{df}{du} =5^ulnu[/tex]

Using the chain rule of derivative

[tex]\frac{df}{dx}=\frac{df}{du} \times\frac{du}{dx}[/tex]

[tex]\frac{df}{dx} =5^uln5 \times 2\\\\\frac{df}{dx} =2ln5(5^{2x})[/tex]

The derivative of the function [tex]f(x)=5^{2x}[/tex] is [tex]\frac{df}{dx} =2ln5(5^{2x})[/tex]

Learn more on the derivative of a function here: https://brainly.com/question/17035616

#SPJ1