Please help me bef9yer9h

Answer:
y = -6x + 7.5
Explanation:
To find perpendicular bisector equation:
Given points: B(-2, 1), C(4, 2)
First find slope:
[tex]\sf slope: \dfrac{y_2 - y_1}{x_2- x_1} \ \ where \ (x_1 , \ y_1), ( x_2 , \ y_2) \ are \ points[/tex]
[tex]\sf slope: \dfrac{2-1}{4-(-2)} } = \dfrac{1}{6}[/tex]
Then the perpendicular slope will be negatively inverse.
[tex]\sf perpendicular \ slope \ (m) : -(\dfrac{1}{6} )^{-1} = -6[/tex]
Then find the mid point coordinates between BC:
[tex](x_m, y_m)= \sf (\dfrac{x_1 + x_2}{2} , \dfrac{y_2 + y_1}{2} )[/tex]
[tex](x_m, y_m) = \sf (\dfrac{-2 + 4}{2} , \dfrac{1 + 2}{2} )[/tex]
[tex](x_m, y_m) = \sf ( 1 , 1.5 )[/tex]
Then find equation:
y - yₘ = m(x - xₘ)
y - 1.5 = -6(x - 1)
y = -6x + 6 + 1.5
y = -6x + 7.5
The answer is y = -6x + 15/2.
First, find the slope of BC.
m = Δy/Δx
m = 2 - 1 / 4 - (-2)
m = 1/6
Hence, the slope of the perpendicular bisector will be the negative reciprocal of the given line.
m' = - (1/ [1/6])
m' = -6
Now, find the midpoint of BC.
M = (-2 + 4 / 2, 2 + 1 / 2)
M = (1, 3/2)
Now, we can find the equation of the perpendicular bisector using the point slope form of equation.
y - y₁ = m (x - x₁)
y - 3/2 = -6 (x - 1)
y - 3/2 = -6x + 6
y = -6x + 15/2