The number of ways to forma a square by connecting the ends of some of the line segments is 3, 024 ways
From the given information, we should use the formula for permutation without repetition.
The formula is given as;
Permutation = [tex]\frac{n!}{n -r !}[/tex]
Where n = number of set = 9
r = 4, this is so because, the sides of a square a four
Permutation = [tex]\frac{9!}{9 - 4!}[/tex]
Permutation = [tex]\frac{9!}{5!}[/tex]
Permutation = [tex]\frac{362, 880}{120}[/tex]
Permutation = 3, 024 ways
Thus, the number of ways to forma a square by connecting the ends of some of the line segments is 3, 024 ways
Learn more about permutation here:
https://brainly.com/question/12468032
#SPJ1