Respuesta :
The solution to the expressions given are;
9 -9t/ 12 - 5t
a. 20/ 169
b. -170/ 169
c. 386/ 169
d. -10/ 169
How to solve the expressions
Given:
[tex]\frac{9 - 19t}{12 - 5t}[/tex]
We can see that both variables in the numerator and denominator have no common factor, thus cannot be factorized further
a. [tex]\frac{203}{169} - \frac{183}{169}[/tex]
First, let's find the lowest common multiple
LCM = 169
= [tex]\frac{203 - 183}{169}[/tex]
= [tex]\frac{20}{169}[/tex]
= 20/ 169
b. [tex]\frac{13}{119} - \frac{183}{119}[/tex]
The lowest common multiple is 119
= [tex]\frac{13 - 183}{119}[/tex]
substract the numerator
= - 170/ 119
c. [tex]\frac{203}{169} - \frac{183}{169}[/tex]
The lowest common multiple is 169
= [tex]\frac{203 + 183}{169}[/tex]
= 386/ 169
d. [tex]\frac{9}{169}- \frac{19}{169}[/tex]
The lowest common multiple is 169
= [tex]\frac{9 - 19}{169}[/tex]
= - 10/ 169
Thus, we have the solutions to be 9 -9t/ 12 - 5t, 20/ 169, -170/ 169, 386/ 169, -10/ 169 respectively.
Learn more about LCM here:
https://brainly.com/question/12732917
#SPJ1