4) Solve ∆ABC, a = 2.5 cm, c = 3.6 cm, and ∠A = 43°. Begin by sketching and labelling
a diagram. Account for all possible solutions. Express each angle to the nearest
degree and each length to the nearest tenth of a unit.

4 Solve ABC a 25 cm c 36 cm and A 43 Begin by sketching and labelling a diagram Account for all possible solutions Express each angle to the nearest degree and class=

Respuesta :

The length of b and angle B and C are 2. 9cm, 44. 9  degrees and 79. 11 degrees respectively.

How to determine the parameters

To determine the angles and length of sides, we use the sine rule

The sine rule is thus:

[tex]\frac{sin A}{a} = \frac{sin B}{b} = \frac{sin C}{c}[/tex]

Given;

  • a = 2. 5cm
  • c = 3. 6cm
  • ∠A = 43°

Let's find angle C

[tex]\frac{sin 43}{2. 5} = \frac{sinC}{3. 6}[/tex]

cross multiply

0. 682 × 3. 6 = sin C × 2. 5

sin C = 2. 4552/ 2. 5

C = [tex]sin^-^1( 0. 98206)[/tex]

C = 79. 11°

To find length of b

b = [tex]\sqrt{c^2 - a^2}[/tex]

substitute the values

b = [tex]\sqrt{3. 6^2 - 2. 5^2}[/tex]

b = [tex]\sqrt{12. 96 - 6. 25 }[/tex]

b = [tex]\sqrt{6. 71}[/tex]

Take square root

b = 2. 59 cm

To find angle B, we have

[tex]\frac{sin 43}{2. 5} = \frac{sin B}{2. 59}[/tex]

cross multiply

0. 682 × 2. 59= sin B × 2. 5

sin B = 0. 7066

B = [tex]sin^-^1 ( 0. 7066)[/tex]

B = 44. 9 °

Thus , the length of b and angle B and C are 2. 9cm, 44. 9  degrees and 79. 11 degrees respectively.

Learn more about sine rule here:

https://brainly.com/question/12827625

#SPJ1