Answer:
2100 kPa
Step-by-step explanation:
The pressure of a gas varies jointly with the amount of the gas and the temperature and inversely with the volume:
[tex]\implies P \propto \dfrac{nT}{V}[/tex]
where:
- P = pressure (measured in kilo Pascals, kPa).
- n = number of moles.
- T = temperature (measured in kelvins, K).
- V = volume (measured in cubic centimeters, cc).
[tex]\textsf{If }a \propto b, \textsf{ then } a=kb \textsf{ for some constant } k:[/tex]
[tex]\implies P =\dfrac{knT}{V}[/tex]
Given:
- P = 1218 kPa
- n = 8 mol
- T = 290 K
- V = 960 cc
Substitute the given values into the derived equation to find the constant of variation (k):
[tex]\implies 1218 =\dfrac{k(8)(290)}{960}[/tex]
[tex]\implies 1218 =\dfrac{2320k}{960}[/tex]
[tex]\implies 1169280=2320k[/tex]
[tex]\implies k=\dfrac{1169280}{2320}[/tex]
[tex]\implies k=504[/tex]
Substitute the found value of k into the equation:
[tex]\implies P =\dfrac{504nT}{V}[/tex]
To find the pressure (P) when:
- n = 6 mol
- T = 250 K
- v = 360 cc
substitute the given values into the equation and solve for P:
[tex]\implies P =\dfrac{504(6)(250)}{360}[/tex]
[tex]\implies P=\dfrac{756000}{360}[/tex]
[tex]\implies P=2100\:\: \sf kPa[/tex]