Respuesta :

The equivalent expression of (8x)^-2/3 * (27x)^-1/3 is 1/12x

How to evaluate the expression?

The expression is given as:

(8x)^-2/3 * (27x)^-1/3

Evaluate the exponent 8^-2/3

(8x)^-2/3 * (27x)^-1/3 = 1/4(x)^-2/3 * (27x)^-1/3

Evaluate the exponent (27x)^-1/3

(8x)^-2/3 * (27x)^-1/3 = 1/4(x)^-2/3 * 1/3(x)^-1/3

Multiply 1/4 and 1/3

(8x)^-2/3 * (27x)^-1/3 = 1/12(x)^-2/3 * (x)^-1/3

Evaluate the exponent

(8x)^-2/3 * (27x)^-1/3 = 1/12(x)^(-2/3 -1/3)

This gives

(8x)^-2/3 * (27x)^-1/3 = 1/12(x)^(-1)

So, we have

(8x)^-2/3 * (27x)^-1/3 = 1/12x

Hence, the equivalent expression of (8x)^-2/3 * (27x)^-1/3 is 1/12x

Read more about equivalent expression at

https://brainly.com/question/2972832

#SPJ1