Arrange the following H atom electron transitions in order of increasing frequency of the photon absorbed or emitted:
(d) n = 4 to n = 3

Respuesta :

The order of increasing frequency of the photon absorbed or emitted by the H atom is :

d → a → c → b.

The wavelength is calculated using the Rydberg's formula given by,

                                   [tex]\frac{1}{\lambda} = R_h (\frac{1}{n_1^2}-\frac{1}{n_2^2} )[/tex],

where  λ is the wavelength of the photon emitted or absorbed from an H atom electron transition from [tex]n_1[/tex] to [tex]n_2[/tex] and [tex]R_h[/tex] = 109677 is the Rydberg Constant.

Now the frequency, [tex]f=\frac{c}{\lambda}[/tex] , where c = [tex]3\times 10^8 ms^{-1}[/tex]  is the speed of light.

(a) [tex]n_1[/tex] =2 to [tex]n_2[/tex] = 4

            [tex]\frac{1}{\lambda} = 109677\times (\frac{1}{2^2}-\frac{1}{4^2} )[/tex] = 20564.4375     [since 1/infinity = 0] Therefore, f =c/ [tex]\lambda[/tex] = 61693.3125 x[tex]10^8[/tex] Hz

(b) [tex]n_1[/tex]=2 to  [tex]n_2[/tex] = 1

           [tex]\frac{1}{\lambda} = 109677\times (\frac{1}{2^2}-\frac{1}{1^2} )[/tex] = -82257.75

Therefore, f=c/ [tex]\lambda[/tex] = 246773.25 x [tex]10^8[/tex] Hz

(c) [tex]n_1[/tex]=2 to  [tex]n_2[/tex] = 5

          [tex]\frac{1}{\lambda} = 109677\times (\frac{1}{2^2}-\frac{1}{5^2} )[/tex] = 23032.17

Therefore, f=c/[tex]\lambda[/tex] = 69096.51 x [tex]10^8[/tex] Hz

(d)  [tex]n_1[/tex]=4 to  [tex]n_2[/tex] = 3

          [tex]\frac{1}{\lambda} = 109677\times (\frac{1}{4^2}-\frac{1}{3^2} )[/tex] = -5331.52

Therefore, f =c/[tex]\lambda[/tex] = - 15994.56x [tex]10^8[/tex] Hz

We compare the frequencies considering only the magnitudes of the frequency. Because the sign of the frequency implies whether a photon is emitted or absorbed.

Thus the increasing order of frequencies of the photon absorbed or emitted in H atom electron transitions is d → a → c → b.

Learn more about the Rydberg's formula at https://brainly.com/question/14649374

#SPJ4