Arrange the following H atom electron transitions in order of decreasing wavelength of the photon absorbed or emitted:
(c) n = 3 to n = 10

Respuesta :

The decreasing order of wavelengths of the photons emitted or absorbed by the H atom is : b → c → a → d

Rydberg's formula :

                                   [tex]\frac{1}{\lambda} = R_h (\frac{1}{n_1^2}-\frac{1}{n_2^2} )[/tex],

where  λ is the wavelength of the photon emitted or absorbed from an H atom electron transition from [tex]n_1[/tex] to [tex]n_2[/tex] and [tex]R_h[/tex] = 109677 is the Rydberg Constant. Here [tex]n_1[/tex] and  [tex]n_2[/tex] represents the transitions.

(a) [tex]n_1[/tex] =2 to [tex]n_2[/tex] = infinity

            [tex]\frac{1}{\lambda} = 109677\times (\frac{1}{2^2}-\frac{1}{\infty^2} )[/tex] = 109677/4     [since 1/infinity = 0] Therefore, [tex]\lambda[/tex] = 4 / 109677 = 0.00003647 m

(b) [tex]n_1[/tex]=4 to  [tex]n_2[/tex] = 20

           [tex]\frac{1}{\lambda} = 109677\times (\frac{1}{4^2}-\frac{1}{20^2} )[/tex] = 6580.62

Therefore,  [tex]\lambda[/tex] = 1 / 6580.62 = 0.000152 m

(c) [tex]n_1[/tex]=3 to  [tex]n_2[/tex] = 10

          [tex]\frac{1}{\lambda} = 109677\times (\frac{1}{3^2}-\frac{1}{10^2} )[/tex] = 11089.56

Therefore,  [tex]\lambda[/tex] = 1 / 11089.56 = 0.00009 m

(d)  [tex]n_1[/tex]=2 to  [tex]n_2[/tex] = 1

          [tex]\frac{1}{\lambda} = 109677\times (\frac{1}{2^2}-\frac{1}{1^2} )[/tex] = - 82257.75

Therefore,  [tex]\lambda[/tex] = 1 /82257.75  = - 0.0000121 m  

[Even though there is a negative sign, the magnitude is only considered because the sign denotes that energy is emitted.]

So the decreasing order of wavelength of the photon absorbed or emitted is b → c → a → d.

Learn more about the Rydberg's formula athttps://brainly.com/question/14649374

#SPJ4