Respuesta :
The trigonometric identities that apply are:
Option A and Option C
- tan(x-pi)=tanx
- cos(x+y)+cos(x-y)=2cosxcosy
Given,
- tan(x-pi)=tanx
- sin(x+y)+sin(x-y)=2cosxsiny
- cos(x+y)+cos(x-y)=2cosxcosy
- cos(x+y)-cos(x-y)=2cosxcosy
We have to check which identities are correct.
1.
tan(x-pi)=tanx
tan(x-pi) = tanx.
[tan(-x) = -tanx]
tan(-(pi-x)) = tanx
-tan(pi-x) = tanx.
[tan(pi - x) lies in the 2nd quadrant and it is negative]
-(-tanx) = tanx
tanx = tanx
This is an identity.
2.
sin(x+y)+sin(x-y)=2cosxsiny
sin(x+y) + sin(x-y) = 2cosxsiny.
[sin(A+B) = sinAcosB + cosAsinB]
sinxcosy + cosxsiny + sinxcosy - cosxsiny = 2cosxsiny
2sinxcosy ≠ 2cosxsiny
This is not an identity.
3.
cos(x+y)+cos(x-y)=2cosxcosy.
[cos(A+B) = cosAcosB - sinAsinB]
[cos(A-B) = cosAcosB + sinAsinB]
cosxcosy - sinxsiny + cosxcosy + sinxsiny = 2cosxcosy
2cosxcosy = 2cosxcosy
This is an identity.
4.
cos(x+y)-cos(x-y)=2cosxcosy
cosxcosy - sinxsiny - (cosxcosy + sinxsiny) = 2cosxcosy
cosxcosy - sinxsiny - cosxcosy - sinxsiny = 2cosxcosy
-2sinxsiny ≠ 2cosxcosy
This is not an identity.
Thus,
Option A and Option C are true.
- tan(x-pi)=tanx
- cos(x+y)+cos(x-y)=2cosxcosy
Learn more about trigonometric identities here:
https://brainly.com/question/12526043
#SPJ1