Respuesta :
Step-by-step explanation:
(x+1)^4=x^4+4x^3+6x^2+4x+1
(X+1)^4–x^4=4x^3+6x^2+4x+1
If x=1>>2^4–1^4=4*1^3+6*1^2+4*1+1
x=2>>3^4–2^4=4*2^3+6*2^2+4*2+1
x=3>>4^4–3^4=4*3^3+6*3^2+6*3+1
.
.
X=n>>(n+1)^4-n^4=4n^3+6n^2+4n+1
X=n-1>>n^4-(n-1)^4=4(n-1)^3+6(n-1)^2+4(n-1)+1
Now we add them together
(n+1)^4–1=4(1^3+2^3+3^3+…+n^3)+6(1^2+2^2+3^2+…+n^2)+4(1+2+3+…+n)+(1+1++1+…+n)
(n+1)^4–1=4s(n)+6{n(n+1)(2n+1)/6}+4{n(n+1)/2}+n . So we could multiply this equation by 6
6(n^4+4n^3+6n^2+4n)=24s(n)+6(2n^3+3n^2+n)+12((n^2+n)+6n
24s(n)=6n^4+24n^3+36n^2+24n-12n^3–18n^2–6n-12n^2–12n-6n
24s(n)=6n^4+12n^3+6n^2
S(n)=(n^4+2n^2+1)/4
answer
(n(n+1)/2)^2
Answer:
(n²(n+1)²)/4
Step-by-step explanation:
1³ = 1
1³ + 2³ = 9
1³ + 2³ + 3³ = 36
1³ + 2³ + 3³ + 4³ = 100
Every answer is a perfect square:
1² = 1
3² = 9
6² = 36
10² = 100
Every number to be squared has a similarity:
(1)² = 1² = 1
(1 + 2)² = 3² = 9
(1 + 2 + 3)² = 6² = 36
(1 + 2 + 3 + 4)² = 10² = 100
Therefore we only need to find the formula for 1 + 2 + 3 + ... + n, and square that formula.
For the new series we have:
1 = 1
1 + 2 = 3
1 + 2 + 3 = 6
1 + 2 + 3 + 4 = 10
Let S be the sum of the new series:
S = 1 + 2 + 3 + ... + (n - 1) + n
S can also be re-written as:
S = n + (n - 1) + (n - 2) ... + 2 + 1
Adding the two sums of the series we have:
2S = (n + 1) + (n + 1) + (n + 1) + ... + (n + 1) = n(n + 1)
S = n(n + 1)/2
Now we only need to square this formula to get the formula for the original series:
[n(n + 1)/2]²
Applying Laws of Indices we have:
(n²(n + 1)²)/4
Hope this helps!