9. If DF = 61 and EF = 18, find DE.
10. If DE=4x-1, EF = 9, and DF = 9x-22, find
the value of x.
D
11. If DF = 78, DE = 5x-9, and EF = 2x + 10, find EF.
12. If DE= 4x + 10, EF=2x-1, and DF = 9x-15, find DF.

9 If DF 61 and EF 18 find DE 10 If DE4x1 EF 9 and DF 9x22 find the value of x D 11 If DF 78 DE 5x9 and EF 2x 10 find EF 12 If DE 4x 10 EF2x1 and DF 9x15 find DF class=

Respuesta :

The obtained answers for the given line segments are as follows:

9. The value of the line segment [tex]\overline {DE}[/tex] = 43; Where [tex]\overline { DF}[/tex] = 61 and [tex]\overline {EF}[/tex]

10. The value of x is 6; Where [tex]\overline {DE}[/tex] = 4x - 1, [tex]\overline {EF}[/tex] = 9, and [tex]\overline { DF}[/tex] = 9x - 22

11. The value of line segment [tex]\overline {EF}[/tex] = 32; Where  [tex]\overline { DF}[/tex] = 78, [tex]\overline {DE}[/tex] = 5x - 9, and [tex]\overline {EF}[/tex] = 2x + 10

12. The value of line segment [tex]\overline { DF}[/tex] = 57; Where [tex]\overline {DE}[/tex]  = 4x + 10 [tex]\overline {EF}[/tex] = 2x - 1, and [tex]\overline { DF}[/tex] = 9x - 15.

What is a line segment?

  • A line segment is a part of a line formed by infinite points with two endpoints at both ends.
  • The line segment is represented by the two endpoints.
  • A line segment has a finite length.

Calculation:

The calculation for the required values is as follows:

9. Finding [tex]\overline{DE}[/tex]:

It is given that,

[tex]\overline{DF}[/tex] = 61; [tex]\overline{EF}[/tex] = 18

From the figure, we can write

[tex]\overline{DF} = \overline{DE} + \overline{EF}[/tex]

On substituting the given values,

61 = [tex]\overline{DE}[/tex] + 18

⇒ [tex]\overline{DE}[/tex] = 61 - 18

∴ [tex]\overline{DE}[/tex] = 43

10. Finding x:

It is given that,

[tex]\overline {DE}[/tex] = 4x - 1, [tex]\overline {EF}[/tex] = 9, and [tex]\overline { DF}[/tex] = 9x - 22

From the figure we have

[tex]\overline{DF} = \overline{DE} + \overline{EF}[/tex]

On substituting,

(9x - 22) = (4x - 1) + 9

⇒ 9x - 22 = 4x - 1 + 9

⇒ 9x - 4x = 8 + 22

⇒ 5x = 30

∴ x = 6

11. Finding [tex]\overline{EF}[/tex]:

It is given that,

[tex]\overline { DF}[/tex] = 78, [tex]\overline {DE}[/tex] = 5x - 9, and [tex]\overline {EF}[/tex] = 2x + 10

From the figure we have

[tex]\overline{DF} = \overline{DE} + \overline{EF}[/tex]

On substituting,

78 = (5x - 9) + (2x + 10)

⇒ 78 = 5x - 9 + 2x + 10

⇒ 7x + 1 = 78

⇒ 7x = 78 - 1

⇒ 7x = 77

∴ x = 11

On substituting x = 11 in [tex]\overline {EF}[/tex] = 2x + 10; we get

[tex]\overline {EF}[/tex] = 2(11) + 10

      = 22 + 10

      = 32

Therefore, the value of the line segment [tex]\overline {EF}[/tex] is 32.

12. Finding [tex]\overline {DF}[/tex]:

It is given that,

[tex]\overline {DE}[/tex]  = 4x + 10 [tex]\overline {EF}[/tex] = 2x - 1, and [tex]\overline { DF}[/tex] = 9x - 15

From the figure we have

[tex]\overline{DF} = \overline{DE} + \overline{EF}[/tex]

On substituting,

(9x - 15) = (4x + 10) + (2x - 1)

⇒ 9x - 15 = 4x + 10 + 2x - 1

⇒ 9x - 15 = 6x + 9

⇒ 9x - 6x = 9 + 15

⇒ 3x = 24

∴ x = 8

On substituting x = 8 in [tex]\overline { DF}[/tex] = 9x - 15; we get

[tex]\overline { DF}[/tex] = 9(8) - 15

      = 72 - 15

      = 57

Therefore, the value of the line segment [tex]\overline { DF}[/tex] is 57.

Learn more about line segments here:

https://brainly.com/question/280216

#SPJ9