contestada

Rewrite in simplest rational exponent form [tex]\sqrt{x} * \sqrt[4]{x}[/tex] Show each step of your process.

Respuesta :

The given expression written in the simplest rational exponent form is [tex]x^{\frac{3}{4} }[/tex]

Writing an Expression in Exponent form

From the question, we are to write the given expression in exponent form

The given expression is

[tex]\sqrt{x} \times \sqrt[4]{x}[/tex]

In exponent form,

[tex]\sqrt{x} = x^{\frac{1}{2} }[/tex]

and

[tex]\sqrt[4]{x} = x^{\frac{1}{4} }[/tex]

Thus,  [tex]\sqrt{x} \times \sqrt[4]{x}[/tex] becomes

[tex]x^{\frac{1}{2} } \times x^{\frac{1}{4} }[/tex]

Applying the multiplication law of indices, we get

[tex]x^{\frac{1}{2} + \frac{1}{4} }[/tex]

= [tex]x^{\frac{3}{4} }[/tex]

Hence, the given expression written in the simplest rational exponent form is [tex]x^{\frac{3}{4} }[/tex]

Learn more on Writing an expression in exponent form here: https://brainly.com/question/4421494

#SPJ1