The next three numbers of the pattern, 1, (1/8), (1/15), (1/22)... are;
[tex] \frac{1}{29} ,\: \frac{1}{36}, \: \frac{1}{43} [/tex]
The given pattern can be presented as follows;
[tex]1,\: \frac{1}{8} ,\: \frac{1}{15}, \: \frac{1}{22} ......[/tex]
Which gives;
[tex] \frac{1}{1} ,\: \frac{1}{8} ,\: \frac{1}{15}, \: \frac{1}{22} ......[/tex]
[tex] \frac{1}{1} ,\: \frac{1}{1 + 7} ,\: \frac{1}{1 + 7 + 7}, \: \frac{1}{1 + 7 + 7 + 7} ......[/tex]
The next three numbers are therefore;
[tex] \frac{1}{1 + 7 + 7 + 7 + 7} ,\: \frac{1}{1 + 7 + 7 + 7 + 7 + 7} ,\: \: \frac{1}{1 + 7 + 7 + 7 + 7 + 7 + 7} ......[/tex]
Simplifying gives;
[tex] \frac{1}{29} ,\: \frac{1}{36}, \: \frac{1}{43} [/tex]
Learn more about sequences of numbers here:
https://brainly.com/question/7882626
#SPJ1