Respuesta :

Answer:

[tex]\textsf{Let }\boxed{x}=\boxed{\textsf{number of single gifts wrapped.}}[/tex]

[tex]\textsf{Let }\boxed{y}=\boxed{\textsf{number of gift bags prepared.}}[/tex]

System of Equations:

[tex]\boxed{x + y = 21}[/tex]

[tex]\boxed{4.5x + 2y = 79.5}[/tex]

Step-by-step explanation:

Given information:

  • Bilquis can wrap a single gift in 4.5 minutes.
  • Bilquis can prepare a gift bag in 2 minutes.
  • Bilquis prepared a total of 21 gifts in 79.5 minutes.

Define the variables:

Let x = number of single gifts wrapped.

Let y = number of gift bags prepared.

Create two equations with the given information and defined variables:

[tex]\begin{cases}x + y = 21\\4.5x + 2y = 79.5 \end{cases}[/tex]  

To solve the system of equations, rewrite the first equation to make x the subject:

[tex]\implies x=21-y[/tex]

Substitute this into the second equation and solve for y:

[tex]\implies 4.5(21-y)+2y=79.5[/tex]

[tex]\implies 94.5-4.5y+2y=79.5[/tex]

[tex]\implies 94.5-2.5y=79.5[/tex]

[tex]\implies -2.5y=-15[/tex]

[tex]\implies y=6[/tex]

Substitute the found value of y into the first equation and solve for x:

[tex]\implies x+6=21[/tex]

[tex]\implies x=15[/tex]

Therefore, the solution to the system of equations is:

  • x = 15  →  Bilquis wrapped 15 single gifts.
  • y = 6  →  Bilquis prepared 6 gift bags.

Learn more about systems of equations here:

https://brainly.com/question/28281431

https://brainly.com/question/28164947