Respuesta :

This a question that has to do with a Rotation about the origin. It is to be noted that T: [tex]\mathbb{R}^{2}[/tex] → [tex]\mathbb{R}^{2}[/tex] As given in the question. See the explanation below.

What is the explanation for the above answer?

First Case:

T (R1, R2) = (+r1, -r2)

Let Bl = {(1,0), (0,1)} Standard Bases

⇒ (T(1, 0) = (+1, 0)

T (0, 1) = (0, -1)

Then matrix is:

A1 = [tex]\begin{bmatrix} +1& 0\\0 & -1\end{bmatrix}[/tex]  and A1 R1 = [tex]\begin{bmatrix} r1\\y2\end{bmatrix}[/tex]

Second Case

T (1, 0) = (0, 1)

T (0, 1) = (1, 0)

The Matrix is:

A2 = [tex]\begin{bmatrix} 0& 1\\1 & 0\end{bmatrix}[/tex]

Hence,

TA2 (TA1(r1))  = [tex]\begin{bmatrix} 0& 1\\1 & 0\end{bmatrix}[/tex] [tex]\begin{bmatrix} r1\\r2\end{bmatrix}[/tex]  = [tex]\begin{bmatrix} -r2\\r1\end{bmatrix}[/tex]

Thus

(TA2 * TA1) (r) = [tex]\begin{bmatrix} 0& -1\\1 & 0\end{bmatrix}[/tex] [tex]\begin{bmatrix} r1\\r2\end{bmatrix}[/tex]

The standard Matrix is:

[tex]\mathbb{A} = \begin{bmatrix} 0& -1\\1 & 0\end{bmatrix}[/tex]

In this case,

T (0, 0) = (0, 0)

⇒ Transformation is rotation about the origin.

Hence Rotation Matrix is given as:

Tθ = [tex]\begin{bmatrix} Cos \theta & - Sin \theta\\Sin \theta & Cos\theta\end{bmatrix}[/tex] ⇒ θ  = π/2

Learn more about Rotation about the Origin:

https://brainly.com/question/11053791

#SPJ4