find the most general antiderivative of the function. (check your answer by differentiation. use c for the constant of the antiderivative.) g(v) = 7 cos(v) − 4 1 − v2

Respuesta :

The most general antiderivative of the function  is  mathematically given as

G(v)  =7 sin (v) -8 arcsin (v)+c

What is the most general antiderivative of the function.?

Generally, the equation for the function is  mathematically given as

[tex]g(v)=7 \cos (v)-\frac{8}{\sqrt{1-v^{2}}}[/tex]

Therefore, the general antiderivative of the function is

[tex]G(v) &=\int\left[\cos (v)-\frac{8}{\sqrt{1-v^{v}}}\right] d v[/tex]

Therefore

[tex]\\\\&=\int 7 \cos (v) d v-\int \frac{8}{\sqrt{1-v^{v}}} d v\end{aligned}[/tex]

[tex]=7 \int \cos (v) d v-8 \int \frac{d v}{\sqrt{1-v^{2}}}[/tex]

[tex]=7 \sin (v)-8 \arcsin (v)+c[/tex]

In conclusion, the most general antiderivative of the function

G(v)  =7 sin (v) -8 arcsin (v)+c

Where

C is the constant of the integration

Read more about the function

https://brainly.com/question/12431044

#SPJ4