The most general antiderivative of the function is mathematically given as
G(v) =7 sin (v) -8 arcsin (v)+c
Generally, the equation for the function is mathematically given as
[tex]g(v)=7 \cos (v)-\frac{8}{\sqrt{1-v^{2}}}[/tex]
Therefore, the general antiderivative of the function is
[tex]G(v) &=\int\left[\cos (v)-\frac{8}{\sqrt{1-v^{v}}}\right] d v[/tex]
Therefore
[tex]\\\\&=\int 7 \cos (v) d v-\int \frac{8}{\sqrt{1-v^{v}}} d v\end{aligned}[/tex]
[tex]=7 \int \cos (v) d v-8 \int \frac{d v}{\sqrt{1-v^{2}}}[/tex]
[tex]=7 \sin (v)-8 \arcsin (v)+c[/tex]
In conclusion, the most general antiderivative of the function
G(v) =7 sin (v) -8 arcsin (v)+c
Where
C is the constant of the integration
Read more about the function
https://brainly.com/question/12431044
#SPJ4