Respuesta :

Answer:

distance = [tex]\bf \sqrt{97}[/tex] units

Step-by-step explanation:

To find the distance between two points given their coordinates, we can use the following formula:

[tex]\boxed{\mathrm{distance} = \sqrt{(x_1-x_2)^2 + (y_1 - y_2)^2}}[/tex],

where [tex](x_1, y_1)[/tex] and [tex](x_2, y_2)[/tex] are coordinates of the two points.

The two points we are given are:

• J(-8, 0)

• K(1, 4).

Using these coordinates and the formula above, we can calculate the distance between the points:

distance = [tex]\sqrt{(-8 - 1)^2 + (0 - 4)^2}[/tex]

              = [tex]\sqrt{(-9)^2 + (-4)^2}[/tex]

              = [tex]\sqrt{81 + 16}[/tex]

              = [tex]\bf \sqrt{97}[/tex]

Therefore, the distance between J and K is [tex]\bf \sqrt{97}[/tex] units.