Answer:
4.
â ABC + â BCA + â CAB = 180
therefore, â ABC = 180 - â BCA - â CAB
using this formula to solve 4a, 4b and 4c:
4a. â ABC = 180 - â BCA - â CAB = 180 - 49 -57 = 26
â ABC = 26
4b. â ABC = 180 - â BCA - â CAB = 180 - 28 -90 = 62
â ABC = 62
4c. â ABC = 180 - â BCA - â CAB = 180 - 38 - 25 = 117
â ABC = 117
5a. In the Triangle ABC, â BCA + â CAB + â ABC = 180
â BCA = 180 - â CAB - â ABC = 180 - 55 - 60 = 65
â BCA = 65
â BCD + â BCA = 180
therefore substituting for â BCA in, â BCD = 180 - â BCA = 180 - 65 = 115
â BCD =115
5b. In the Triangle ABC, â BCA + â CAB + â ABC = 180
â BCA = 180 - â CAB - â ABC = 180 - 125 - 30 = 25
â BCA = 25
â BCD + â BCA = 180
therefore substituting for â BCA in, â BCD = 180 - â BCA = 180 - 25 = 155
â BCD = 155
5c. â ABD + â CBD = 180
therefore â CBD = 180 - â ABD = 180 - 132 = 48
â CBD = 48
In the Triangle BCD, â CBD + â BDC + â BCD = 180
therefore â BCD = 180 - â CBD - â BDC = 180 - 48 - 71 = 61
â BCD =61
6. 4 angles of a quadrilateral = 360
â a+110+60+80=360
â a=360-110-60-80=110
â a = 110
7. four angles of a quadrilateral = 360
using his formula to solve for â a, â b and â c.
for angle a: â a+110+95+63=360
â a=360-110-95-63=92
â a = 92
for angle b: â b+40+62+35=360
â b=360-40-62-35=223
â b=223
for angle c: â c+100+172+35=360
â c=360-100-172-35=53
â c=53