Respuesta :
Answer:
- The other endpoint is F( - 22, 4)
=============================
Given
Segment EF with:
- Endpoint E = (10, - 8),
- Midpoint M = (- 6, - 2),
- Endpoint F = (x, y).
Solution
Use midpoint equation:
- x = (x₁ + x₂)/2, y = (y₁ + y₂)/2
Find unknown coordinates of the point F:
- - 6 = (10 + x)/2 ⇒ -12 = 10 + x ⇒ x = - 12 - 10 = - 22,
- - 2 = (- 8 + y)/2 ⇒ - 4 = - 8 + y ⇒ y = - 4 + 8 = 4.
So the point is F = ( - 22, 4)
Answer:
F = (-22, 4)
Step-by-step explanation:
Midpoint between two points
[tex]\textsf{Midpoint}=\left(\dfrac{x_2+x_1}{2},\dfrac{y_2+y_1}{2}\right)\\\\ \textsf{where $(x_1,y_1)$ and $(x_2,y_2)$ are the endpoints.}[/tex]
Given information:
- Midpoint = (-6, -2)
- E = (10, -8)
Define the endpoints of the line segment EF:
- Let (x₁, y₁) = endpoint E = (10, -8)
- Let (x₂, y₂) = endpoint F
Substitute the given information into the formula:
[tex]\implies (x_M,y_M)=\left(\dfrac{x_F+x_E}{2},\dfrac{y_F+y_E}{2}\right)[/tex]
[tex]\implies (-6,-2)=\left(\dfrac{x_F+10}{2},\dfrac{y_F-8}{2}\right)[/tex]
Find the x-coordinate of M:
[tex]\implies \dfrac{x_F+10}{2}=-6[/tex]
[tex]\implies x_F+10=-12[/tex]
[tex]\implies x_F=-22[/tex]
Find the y-coordinate of M:
[tex]\implies \dfrac{y_F-8}{2}=-2[/tex]
[tex]\implies y_F-8=-4[/tex]
[tex]\implies y_F=4[/tex]
Therefore, the coordinates of endpoint F are (-22, 4).
