The original fraction has a denominator that is 3 less than the numerator. If we define the numerator as x, then the denominator is x-3, and the fraction can be written as x/(x-3).
If 1 is added both to the numerator and denominator, the resulting fraction is equal to 10/7.
Then, we can write:
[tex]\begin{gathered} \frac{x+1}{(x-3)+1}=\frac{10}{7} \\ \frac{x+1}{x-2}=\frac{10}{7} \\ 7(x+1)=10(x-2) \\ 7x+7=10x-20 \\ 7x-10x=-20-7 \\ -3x=-27 \\ x=\frac{-27}{-3} \\ x=9 \end{gathered}[/tex]With the value of x, we can replace it in the fraction and know the value of it:
[tex]\frac{x}{x-3}=\frac{9}{9-3}=\frac{9}{6}=\frac{3}{2}[/tex]Answer: The fraction is 9/6, that can be simplified to 3/2 or 1.5.