Respuesta :

Step 1

Find the equation of both lines using

[tex]\frac{y_2-y_1}{x_2-x_1}=\text{ }\frac{y-y_1}{x-x_1}[/tex]

Where,

[tex]\begin{gathered} y_1=-9 \\ y_2=\text{ -2} \\ x_1=\text{ -6} \\ x_2=1 \end{gathered}[/tex]

Hence,

[tex]\frac{-2-(-9)}{1-(-6)}=\frac{y-(-9)}{x-(-6)}[/tex][tex]\begin{gathered} \frac{7}{7}=\frac{y+9}{x+6} \\ y+9\text{ = x+6} \\ y\text{ = x+6-9} \\ y\text{ = x-}3 \end{gathered}[/tex]

For the second line we will have

[tex]\begin{gathered} \frac{-4-(-8)}{1-5}=\text{ }\frac{y-(-8)_{}}{x-5} \\ \frac{4}{-4}=\frac{y+8}{x-5} \\ -1(x-5)\text{ = y+8} \\ -x+5\text{ = y+8} \\ y\text{ =- x+5-8} \\ y\text{ = -x-3} \end{gathered}[/tex]

Step 2

Hence expressed the graphed solution as a piecewise function

[tex]f(x)=\begin{cases}x-3,-6\leq x<1 \\ \square \\ -x-3,-1