Drag each label to the correct location on the table. Match each equation with its number of unique solutions. y = -52 – 41 +7 y = –202 + 91 - 11 y = 3.12 – 61 + 3 Two Real Solutions One Real Solution One Complex Solution Two Complex Solutions Reset Next reserved

Drag each label to the correct location on the table Match each equation with its number of unique solutions y 52 41 7 y 202 91 11 y 312 61 3 Two Real Solutions class=

Respuesta :

When b²−4ac=0 there is one real root.

When b²−4ac>0 there are two real roots.

When b²−4ac<0 no real roots or two complex roots

First equation

-x²-4x+7

[tex]\begin{gathered} b^{2}-4ac \\ \mleft(-4\mright)^2-4\mleft(-1\mright)\cdot\: 7 \\ 16+28=44 \end{gathered}[/tex]

b²−4ac>0, then equation -x²-4x+7 has two real roots.

Second equation

-2x²+9x-11

[tex]\begin{gathered} b^{2}-4ac \\ 9^2-4\mleft(-2\mright)\mleft(-11\mright) \\ 81-88=-7 \end{gathered}[/tex]

b²−4ac<0, then equation -2x²+9x-11 has two complex roots.

[tex]x1=\frac{9}{4}-i\frac{\sqrt{7}}{4},\: x2=\frac{9}{4}+i\frac{\sqrt{7}}{4}[/tex]

Third equation

3x²-6x+3

[tex]\begin{gathered} b^{2}-4ac \\ \mleft(-6\mright)^2-4\cdot\: \: 3\cdot\: \: 3 \\ 36-36=0 \end{gathered}[/tex]

b²−4ac=0, then equation 3x²-6x+3 has one root.