What is this sign of 30゚ angle and the sign of the 60゚ angle

We are asked to find out the values of sine 60° and sine 30°
Recall from the trigonometric ratios,
[tex]\sin \theta=\frac{\text{opposite}}{\text{hypotenuse}}[/tex]From the given triangle,
With respect to angle 60°, the opposite side is 25√3 ft and the hypotenuse is 50 ft.
Let us substitute these values into the above sine ratio
[tex]\begin{gathered} \sin \theta=\frac{\text{opposite}}{\text{hypotenuse}} \\ \sin 60\degree=\frac{25\sqrt[]{3}}{50} \\ \sin 60\degree=\frac{\sqrt[]{3}}{2} \end{gathered}[/tex]So, the value of sine 60° is √3/2
From the given triangle,
With respect to angle 30°, the opposite side is 25 ft and the hypotenuse is 50 ft.
Let us substitute these values into the above sine ratio
[tex]\begin{gathered} \sin \theta=\frac{\text{opposite}}{\text{hypotenuse}} \\ \sin 30\degree=\frac{25}{50} \\ \sin 30\degree=\frac{1}{2} \end{gathered}[/tex]So, the value of sine 30° is 1/2
Therefore, the sine of 60゚ angle is √3/2 and the sine of 30゚ angle is 1/2