Respuesta :

we have the function

[tex]P(t)=\frac{60(1+0.4t)}{0.01t+3}[/tex]

Part A

For t=0

substitute

[tex]\begin{gathered} P(t)=\frac{60(1+0.4(0))}{0.01(0)+3} \\ \\ P(t)=\frac{60(1)}{3} \\ \\ P(t)=20 \end{gathered}[/tex]

The initial population was 20 insects

Part B

For t=5 years -------> Convert to months

t=60 months

substitute

[tex]\begin{gathered} P(t)=\frac{60(1+0.4(60))}{0.01(60)+3} \\ \\ P(t)=\frac{60(1+24)}{0.6+3} \\ \\ P(t)=\frac{1500}{3.6} \\ \\ P(t)=416.67 \end{gathered}[/tex]

The answer is 417 insects

Part C

Determine horizontal asymptote

[tex]\begin{gathered} P(t)=\frac{60\left(1+0.4t\right)}{0.01t+3} \\ \\ rewrite \\ P(t)=\frac{60+24t}{0.01t+3} \end{gathered}[/tex]

The horizontal asymptote is given by the ratio of

[tex]\frac{24}{0.01}=2,400[/tex]

P(t)=2,400 ---------> horizontal asymptote

that means

as the value of time t increases ------> the value of the population tends to 2,400 insects

the population cannot be greater than 2400 insects

The range for the function P(t) is the interval [20, 2400)

All real numbers greater than or equal to 20 insects and less than 2400 insects

Part D

Using a graphing tool

Ver imagen LitiaA483808