Respuesta :

a. Graph -f(x):

By the transformations rules for functions, the graph of -f(x) is equal to a reflection over the x-axis, and a change of the y-coordinates:

[tex](x,y)\rightarrow(x,-y)[/tex]

Then, given the function:

[tex]f(x)=\sqrt[]{x}[/tex]

The graph of -f(x) is:is

The domain of the function is the set of all possible x-values, then it is:

[tex]\lbrack0,+\infty)[/tex]

The range is the set of all possible values of the function, then it is:

[tex]\lbrack0,-\infty)[/tex]

b. Graph f(x+2)-4:

The transformation f(x+2) is an horizontal translation left 2 units.

And the transformation f(x+2)-4 is a vertical translation down 4 units.

Then, the coordinates of this graph in comparison to the given graph are:

[tex](x,y)\rightarrow(x-2,y-4)[/tex]

Then for the point (1,1) the new coordinates are (1-2,1-4)=(-1,-3).

For (4,2): the new coordinates (4-2,2-4)=(2,-2)

For (9,3): the new coordinates (9-2,3-4)=(7,-1)

The graph is:

The domain of this function is:

[tex]\lbrack-2,+\infty)[/tex]

And the range is:

[tex]\lbrack-4,+\infty)[/tex]

Ver imagen LilyL481167
Ver imagen LilyL481167