Respuesta :

A lineal equation has the next form:

[tex]y=mx+b[/tex]

where m is the slope and is calculated as follow:

[tex]m=\frac{y_2-y_1}{x_2-x_1}[/tex]

For this case

y1=20

y2= 25

x1=12

x2= 5

so:

[tex]m=\frac{25-20}{5-12_{}}=\frac{5}{-7}=-\frac{5}{7}[/tex]

then the equation will be:

[tex]y=(-\frac{1}{7})x+b[/tex]

Using one of the points we calculate the b

we are going to use y=25 x=5

[tex]25=(-\frac{5}{7})5+b[/tex]

Clearing the b we get:

[tex]25-\frac{25}{7}=b\Rightarrow\frac{200}{7}=b[/tex]

b=200/7 or b=28.57

So the final equation is:[tex]y=-\frac{1}{7}x+\frac{200}{7}[/tex]