Given Data:
The upstream speed is, 25 miles/hr.
The downstream speed is, 35 miles/hr.
The total time is, 12 hr.
Let d be the distance traveled. He can travel 25 miles/ hr in upstream, so the time taken will be,
[tex]t=\frac{d}{25}[/tex]He can travel 35 miles/ hr in upstream, so the time taken will be,
[tex]t^{\prime}=\frac{d}{35}[/tex]Total time is, 12 hr. So we have,
[tex]\begin{gathered} 12=\frac{d}{25}+\frac{d}{35} \\ 12=\frac{d}{5\times5}+\frac{d}{7\times5} \\ 12=\frac{1}{5}(\frac{d}{7}+\frac{d}{5}) \\ 12\times5=\frac{d}{7}+\frac{d}{5} \\ 60\times35=5d+7d \\ 2100=12d \\ d=\frac{2100}{12}=175 \end{gathered}[/tex]Therefore the total distance is, 350 mile