Respuesta :

Answer:

3 years

Explanations:

The given function representing the population of alligators is:

[tex]P(t)\text{ = (}319)2^{\frac{t}{3}}[/tex]

Find the intial population at t = 0

[tex]\begin{gathered} P(0)\text{ = 319 }\times2^0 \\ P(0)\text{ = 319 }\times\text{ 1} \\ P(0)\text{ }=\text{ 319} \end{gathered}[/tex]

The population will double when:

P(t) = 319 x 2

P(t) = 638

The doubling time is the value of t at which P(t) = 638

[tex]\begin{gathered} P(t)\text{ = 319 }\times2^{\frac{t}{3}} \\ 638\text{ = 319 }\times2^{\frac{t}{3}} \\ \frac{638}{319}=2^{\frac{t}{3}} \\ 2\text{ }=2^{\frac{t}{3}} \\ 2^1=2^{\frac{t}{3}} \\ 1\text{ = }\frac{t}{3} \\ t\text{ = 3} \end{gathered}[/tex]

The population will double after 3 years.

Therefore, the doubling-time for this population of alligators is 3 years