what is the doubling timefor this population of alligators ?

3 years
Explanations:The given function representing the population of alligators is:
[tex]P(t)\text{ = (}319)2^{\frac{t}{3}}[/tex]Find the intial population at t = 0
[tex]\begin{gathered} P(0)\text{ = 319 }\times2^0 \\ P(0)\text{ = 319 }\times\text{ 1} \\ P(0)\text{ }=\text{ 319} \end{gathered}[/tex]The population will double when:
P(t) = 319 x 2
P(t) = 638
The doubling time is the value of t at which P(t) = 638
[tex]\begin{gathered} P(t)\text{ = 319 }\times2^{\frac{t}{3}} \\ 638\text{ = 319 }\times2^{\frac{t}{3}} \\ \frac{638}{319}=2^{\frac{t}{3}} \\ 2\text{ }=2^{\frac{t}{3}} \\ 2^1=2^{\frac{t}{3}} \\ 1\text{ = }\frac{t}{3} \\ t\text{ = 3} \end{gathered}[/tex]The population will double after 3 years.
Therefore, the doubling-time for this population of alligators is 3 years