In general, an inverse variation relation has the form shown below
[tex]\begin{gathered} y=\frac{k}{x} \\ k\to\text{ constant} \end{gathered}[/tex]It is given that x=16, then y=5/4; thus,
[tex]\begin{gathered} \frac{5}{4}=\frac{k}{16} \\ \Rightarrow k=\frac{5}{4}\cdot16 \\ \Rightarrow k=20 \end{gathered}[/tex]Therefore, the equation is y=20/x
[tex]\Rightarrow y=\frac{20}{x}[/tex]2) Set x=4 in the equation above; then
[tex]\begin{gathered} x=4 \\ \Rightarrow y=\frac{20}{4}=5 \\ \Rightarrow y=5 \end{gathered}[/tex]When x=4, y=5.