Respuesta :
To determine the data that is within 2 population standard deviations of the mean, let's calculate the mean first.
To determine the mean, let's add all the data and divide the result by the total number of data.
[tex]28+65+114+74+68+75+70+69+64=627[/tex][tex]627\div9=69.66667[/tex]The mean is 69.66667.
Let's now calculate the standard deviation. Here are the steps:
1. Subtract the mean from each data, then square the result.
[tex]\begin{gathered} 28-69.66667=(-41.66667)^2=1,736.1114 \\ 65-69.66667=(-4.66667)^2=21.7778 \end{gathered}[/tex][tex]\begin{gathered} 114-69.66667=(44.33333)^2=1,965.4441 \\ 74-69.66667=(4.33333)^2=18.7777 \end{gathered}[/tex][tex]\begin{gathered} 68-69.66667=(-1.66667)^2=2.7778 \\ 75-69.66667=(5.33333)^2=28.4444 \end{gathered}[/tex][tex]\begin{gathered} 70-69.66667=(0.33333)^2=0.1111 \\ 69-69.66667=(-0.66667)^2=0.4444 \\ 64-69.66667=(-5.66667)^2=32.1111 \end{gathered}[/tex]2. Add the results in step 1.
[tex]1,736.1114+21.7778+1,965.4441+18.7777+2.7778=3,744.8888[/tex][tex]28.4444+0.1111+0.4444+32.1111=61.111[/tex][tex]3,744.8888+61.111=3,805.9998[/tex]The sum is 3, 805.9998.
3. Divide the sum by the total number of data.
[tex]3,805.9998\div9=422.8889[/tex]4. Square root the result in step 3.
[tex]\sqrt{422.8889}\approx20.56[/tex]The standard deviation is approximately 20.56.
So, the data that are within 2 population standard deviations of the mean are between:
[tex]\begin{gathered} 69.67-(2)(20.56)=28.55\approx29 \\ 69.67+(2)(20.56)=110.79\approx111 \end{gathered}[/tex]The data that are within 2 population standard deviations of the mean are between 29 and 111. Based on the given data, the data that are between 29 and 111 are the following: 64, 65, 68, 69, 70, 74, and 75. There are 7 data that are within 2 population standard deviations of the mean.