Respuesta :
Answer: x 0 1 2 3
p(x) 0.011 0.170 0.279 0.539
Given that the values of x =
Television 0 1 2 3
Household 30 443 727 1401
Let television be = x
Household = frequency = distribution
Firstly, we need to find the interval of x
The interval of x = Range between two numbers
1 - 0 = 1
2 -1 = 1
3 - 2 = 1
Hence, the interval is 1
[tex]p(x)\text{ = }\frac{frequency\text{ for x interval}}{N\text{ x w}}[/tex]Where N = total frequency
w = interval
Total frequency = 30 + 443 + 727 + 1401
Total frequency = 2601
[tex]\begin{gathered} \text{when x = 0} \\ p(x)\text{ = }\frac{30}{2601\text{ x 1}} \\ p(x)\text{ = }\frac{30}{2601} \\ p(x)\text{ = }0.011 \end{gathered}[/tex]when x = 1
[tex]\begin{gathered} p(x)\text{ = }\frac{443}{2601\text{ x 1}} \\ p(x)\text{ = }\frac{443}{2601} \\ p(x)\text{ = 0}.170 \end{gathered}[/tex]When x = 2
[tex]\begin{gathered} p(x)\text{ = }\frac{727}{2601\text{ x 1}} \\ p(x)\text{ = }\frac{727}{2601} \\ p(x)\text{ = 0.279} \end{gathered}[/tex]when x = 3
[tex]\begin{gathered} p(x)\text{ = }\frac{1401}{1\text{ x 2601}} \\ p(x)\text{ = }\frac{1401}{2601} \\ p(x)\text{ = 0.539} \end{gathered}[/tex]Therefore,
x 0 1 2 3
p(x) 0.011 0.170 0.279 0.539