Respuesta :

The area A of a circle is given by

[tex]A=\pi r^2[/tex]

where Pi is 3.1416 and r is the radius. In our case, we get

[tex]100\operatorname{mm}=\pi r^2[/tex]

and we need to find r. In this regard, if we move Pi to the left hand side we get

[tex]\frac{100}{\pi}=r^2[/tex]

then, r is given by

[tex]r=\sqrt[]{\frac{100}{\pi}}[/tex]

Now, the circunference C is given by

[tex]C=2\pi\text{ r}[/tex]

then, by substituting our last result into this formula, we have

[tex]C=2\pi\sqrt[]{\frac{100}{\pi}}[/tex]

since square root of 100 is 10, we get

[tex]C=2\pi\frac{10}{\sqrt[]{\pi}}[/tex]

we can rewrite this result as

[tex]\begin{gathered} C=\frac{2\pi\times10}{\sqrt[]{\pi}} \\ C=\frac{2\sqrt[]{\pi\text{ }}\sqrt[]{\pi}\times10}{\sqrt[]{\pi}} \end{gathered}[/tex]

and we can cancel out a square root of Pi. Then, we have

[tex]C=2\sqrt[]{\pi}\times10[/tex]

and the circunference is

[tex]C=20\text{ }\sqrt[]{\pi}\text{ milimeters}[/tex]