Respuesta :
0.We are asked to determine the location of an image formed by an 7.75mm tall object that is located a distance of 17.5 cm from a convex mirror.
First, we will calculate the focal length using the following formula:
[tex]f=-\frac{R}{2}[/tex]Where:
[tex]\begin{gathered} f=\text{ focal length} \\ R=\text{ radius} \end{gathered}[/tex]Substituting the values we get:
[tex]f=-\frac{9.40cm}{2}[/tex]Solving the operations:
[tex]f=-4.7cm[/tex]Now, we use the following formula:
[tex]\frac{1}{d_o}+\frac{1}{d_i}=\frac{1}{f}[/tex]Where:
[tex]\begin{gathered} d_0=\text{ distance of the object} \\ d_i=\text{ distance of the image} \end{gathered}[/tex]Now, we substitute the known values:
[tex]\frac{1}{17.5cm}+\frac{1}{d_i}=-\frac{1}{4.7cm}[/tex]Now, we solve for the distance of the image. First, we subtract 1/17.5 from both sides:
[tex]\frac{1}{d_i}=-\frac{1}{4.7cm}-\frac{1}{17.5cm}[/tex]Solving the operation:
[tex]\frac{1}{d_i}=-0.27\frac{1}{cm}[/tex]Now, we invert both sides:
[tex]d_i=\frac{1}{-0.27}cm=-3.7cm[/tex]Therefore. the location of the image is -3.7 centimeters.
The other parts are solved using the same procedure.
Part B. To calculate the size of the image we will use the following relationship:
[tex]\frac{h_i}{h_o}=-\frac{d_i}{d_0}[/tex]Where:
[tex]h_i,h_0=\text{ height of the image and height of the object}[/tex]Substituting we get:
[tex]\frac{h_i}{7.75mm}=-\frac{-3.7cm}{17.5cm}[/tex]Solving the operations on the right side:
[tex]\frac{h_i}{7.75mm}=0.21[/tex]Now, we multiply both sides by 7.75:
[tex]h_i=(7.75mm)(0.21)[/tex]Solving the operations:
[tex]h_i=1.64mm[/tex]Therefore, the height of the iamge is 1.64 mm.