Respuesta :

We are given:

[tex]sin\text{ }\theta=\frac{3}{5},cos\text{ }\theta=\frac{4}{5}[/tex]

The tangent is defined as the ratio of the sine and the cosine:

[tex]tan\text{ }\theta=\frac{sin\text{ }\theta}{cos\text{ }\theta}[/tex]

Calculating:

[tex]\begin{gathered} tan\text{ }\theta=\frac{\frac{3}{5}}{\frac{4}{5}}=\frac{3}{5}\cdot\frac{5}{4} \\ \\ tan\text{ \theta}=\frac{3}{4} \end{gathered}[/tex]

The cotangent is the reciprocal of the tangent:

[tex]\begin{gathered} \cot\theta=\frac{1}{\tan\theta} \\ \\ \cot\theta=\frac{1}{\frac{3}{4}}=\frac{4}{3} \end{gathered}[/tex]

The secant is the reciprocal of the cosine:

[tex]\begin{gathered} \sec\theta=\frac{1}{\cos\theta}=\frac{1}{\frac{4}{5}} \\ \\ \sec\theta=\frac{5}{4} \end{gathered}[/tex]

The cosecant is the reciprocal of the sine:

[tex]\begin{gathered} \csc\theta=\frac{1}{\sin\theta}=\frac{1}{\frac{3}{5}} \\ \\ \csc\theta=\frac{5}{3} \end{gathered}[/tex]