Use identities to find tan, csc, sec, and cot. Where necessary, rationalize denominators

We are given:
[tex]sin\text{ }\theta=\frac{3}{5},cos\text{ }\theta=\frac{4}{5}[/tex]The tangent is defined as the ratio of the sine and the cosine:
[tex]tan\text{ }\theta=\frac{sin\text{ }\theta}{cos\text{ }\theta}[/tex]Calculating:
[tex]\begin{gathered} tan\text{ }\theta=\frac{\frac{3}{5}}{\frac{4}{5}}=\frac{3}{5}\cdot\frac{5}{4} \\ \\ tan\text{ \theta}=\frac{3}{4} \end{gathered}[/tex]The cotangent is the reciprocal of the tangent:
[tex]\begin{gathered} \cot\theta=\frac{1}{\tan\theta} \\ \\ \cot\theta=\frac{1}{\frac{3}{4}}=\frac{4}{3} \end{gathered}[/tex]The secant is the reciprocal of the cosine:
[tex]\begin{gathered} \sec\theta=\frac{1}{\cos\theta}=\frac{1}{\frac{4}{5}} \\ \\ \sec\theta=\frac{5}{4} \end{gathered}[/tex]The cosecant is the reciprocal of the sine:
[tex]\begin{gathered} \csc\theta=\frac{1}{\sin\theta}=\frac{1}{\frac{3}{5}} \\ \\ \csc\theta=\frac{5}{3} \end{gathered}[/tex]