Respuesta :

We are given the following system of equations:

[tex]\begin{gathered} 6x-4y=-8,(1) \\ y=-6x+2,(2) \end{gathered}[/tex]

To solve this system by substitution we will replace the value of "y" from equation (2) in equation (1)

[tex]6x-4(-6x+2)=-8[/tex]

Now we use the distributive property:

[tex]6x+24x-8=-8[/tex]

Now we add like terms:

[tex]30x-8=-8[/tex]

Now we add 8 to both sides:

[tex]30x-8+8=-8+8[/tex]

Solving the operations:

[tex]30x=0[/tex]

Dividing by 30:

[tex]x=\frac{0}{30}=0[/tex]

Therefore x = 0. Now we replace the value of "x" in equation (2):

[tex]\begin{gathered} y=-6x+2 \\ y=-6(0)+2 \\ y=2 \end{gathered}[/tex]

Therefore, the solution of the system is:

[tex](x,y)=(0,2)[/tex]