Respuesta :

[tex]f(x)=ax^2+bx+c[/tex]

At x=0

[tex]\begin{gathered} f(x)=14 \\ c=14 \end{gathered}[/tex]

at x=1

[tex]\begin{gathered} f(x)=10.5 \\ a+b=10.5-14 \\ a+b=-3.5 \end{gathered}[/tex]

at x=2

[tex]\begin{gathered} f(x)=8 \\ 4a+2b=8-14 \\ 4a+2b=-6 \end{gathered}[/tex]

a=1/2

So correct option is (c).