Answer:
5.53 m/s
Explanation:
The work is equal to the change in the kinetic energy, so
[tex]\begin{gathered} W=\Delta KE \\ W=\frac{1}{2}m(v^2_f-v^2_i)^{}^{} \end{gathered}[/tex]Since the car starts at rest, the initial velocity vi = 0 m/s, so we can solve for the final velocity vf as follows
[tex]\begin{gathered} W=\frac{1}{2}mv^2_f \\ 2W=mv^2_f \\ \frac{2W}{m}=v^2_f \\ v_f=\sqrt[]{\frac{2W}{m}} \end{gathered}[/tex]So, replacing the work W = 13,000J and the mass m = 850kg, we get:
[tex]\begin{gathered} v_f=\sqrt[]{\frac{2(13,000J)}{850\operatorname{kg}}} \\ v_f=5.53\text{ m/s} \end{gathered}[/tex]Therefore, the velocity is 5.53 m/s