Respuesta :

Given:

[tex]\begin{gathered} A=\begin{bmatrix}{12} & {4} & {} \\ {-4} & {-10} & {} \\ {-6} & {12} & {}\end{bmatrix} \\ B=\begin{bmatrix}{8} & {9} & {} \\ {-3} & {-1} & {} \\ {-9} & {-10} & {}\end{bmatrix} \end{gathered}[/tex]

Now, let's find (-1/2)A.

Each term of the matrix A is multiplied by -1/2.

[tex]\begin{gathered} \frac{-1}{2}A=\frac{-1}{2}\begin{bmatrix}{12} & {4} & {} \\ {-4} & {-10} & {} \\ {-6} & {12} & {}\end{bmatrix} \\ =\begin{bmatrix}{\frac{-12}{2}} & {\frac{-4}{2}} & {} \\ {\frac{4}{2}} & {\frac{10}{2}} & {} \\ {\frac{6}{2}} & {-\frac{12}{2}} & {}\end{bmatrix} \\ =\begin{bmatrix}{-6} & {-2} & {} \\ {2} & {5} & {} \\ {3} & {-6} & {}\end{bmatrix} \end{gathered}[/tex]

Now let's find (-1/2)A+B.

To find (-1/2)A+B, the corresponding terms of the matrices are added together.

[tex]\begin{gathered} \frac{-1}{2}A+B=\begin{bmatrix}{-6} & {-2} & {} \\ {2} & {5} & {} \\ {3} & {-6} & {}\end{bmatrix}+\begin{bmatrix}{8} & {9} & {} \\ {-3} & {-1} & {} \\ {-9} & {-10} & {}\end{bmatrix} \\ =\begin{bmatrix}{-6+8} & {-2+9} & {} \\ {2-3} & {5-1} & {} \\ {3-9} & {-6-10} & {}\end{bmatrix} \\ =\begin{bmatrix}{2} & {7} & {} \\ {-1} & {4} & {} \\ {-6} & {-16} & {}\end{bmatrix} \end{gathered}[/tex]

Therefore,

[tex]undefined[/tex]