Use each of the three corresponding base and height pairs to find the area of the triangle. Why is the area the same for each calculation?

Answer:
The three correct corresponding pairs that gives the same area are;
[tex]\begin{gathered} A=\frac{1}{2}\times10\times3.5=17.5cm^2 \\ A=\frac{1}{2}\times5\times7=17.5cm^2 \\ A=\frac{1}{2}\times14\times2.5=17.5cm^2 \end{gathered}[/tex]The areas are the same in each case because the product of each pair is the same.
Explanation:
Given the base and height pairs in the question.
Let us use the corresponding pairs that gives the same area.
Firstly, for the first pair;
[tex]\begin{gathered} A=\frac{1}{2}\times10\times3.5=17.5cm^2 \\ A=\frac{1}{2}\times10\times7=35cm^2 \\ A=\frac{1}{2}\times10\times2.5=12.5cm^2 \end{gathered}[/tex]Secondly, the second pair is;
[tex]\begin{gathered} A=\frac{1}{2}\times5\times7=17.5cm^2 \\ A=\frac{1}{2}\times5\times3.5=8.75cm^2 \\ A=\frac{1}{2}\times5\times2.5=6.25cm^2 \end{gathered}[/tex]Thirdly, the third pair;
[tex]\begin{gathered} A=\frac{1}{2}\times14\times3.5=24.5cm^2 \\ A=\frac{1}{2}\times14\times7=49cm^2 \\ A=\frac{1}{2}\times14\times2.5=17.5cm^2 \end{gathered}[/tex]Therefore, the three correct corresponding pairs that gives the same area are;
[tex]\begin{gathered} A=\frac{1}{2}\times10\times3.5=17.5cm^2 \\ A=\frac{1}{2}\times5\times7=17.5cm^2 \\ A=\frac{1}{2}\times14\times2.5=17.5cm^2 \end{gathered}[/tex]The areas are the same in each case because the product of each pair is the same.