Respuesta :

Answer:

[tex]\begin{gathered} \begin{equation*} f(g(x))=\sqrt{x^2+7}+2 \end{equation*} \\ \begin{equation*} g(f(x))=x+4\sqrt{x}+11 \end{equation*} \end{gathered}[/tex]

Explanation:

Given the functions f(x) and g(x) below:

[tex]\begin{gathered} f(x)=\sqrt{x}+2 \\ g\mleft(x\mright)=x^2+7 \end{gathered}[/tex]

Part A

We want to find the simplified form of f(g(x)).

[tex]f(x)=\sqrt{x}+2[/tex]

Replace x with g(x):

[tex]f(g(x))=\sqrt{g(x)}+2[/tex]

Finally, enter the expression for g(x) and simplify if possible:

[tex]\implies f\mleft(g\mleft(x\mright)\mright)=\sqrt{x^2+7}+2[/tex]

Part B

We want to find the simplified form of g(f(x)). To do this, begin with g(x):

[tex]g\mleft(x\mright)=x^2+7[/tex]

Replace x with f(x):

[tex]g(f(x))=[f(x)]^2+7[/tex]

Finally, enter the expression for f(x) and simplify if possible:

[tex]\begin{gathered} g\mleft(f\mleft(x\mright)\mright)=(\sqrt{x}+2)^2+7 \\ =(\sqrt{x}+2)(\sqrt{x}+2)+7 \\ =x+2\sqrt{x}+2\sqrt{x}+4+7 \\ \implies g(f(x))=x+4\sqrt{x}+11 \end{gathered}[/tex]

Therefore:

[tex]\begin{equation*} g(f(x))=x+4\sqrt{x}+11 \end{equation*}[/tex]