we have the exponential decay function
[tex]P(t)=52.5(e)^{-0.0143t}[/tex]Part b
Estimate the population of the country in 2018
Remember that
t=0 -----> year 1995
so
t=2018-1995=23 years
substitute in the function above
[tex]\begin{gathered} P(t)=52.5(e)^{-0.0143\cdot23} \\ P(t)=37.8\text{ million} \end{gathered}[/tex]Part c
After how many years will the population of the country be 2 ​million, according to this​ model?
For P(t)=2
substitute
[tex]2=52.5(e)^{-0.0143t}[/tex]Solve for t
[tex]\frac{2}{52.5}=(e)^{-0.0143t}[/tex]Apply ln on both sides
[tex]\begin{gathered} \ln (\frac{2}{52.5})=\ln (e)^{-0.0143t} \\ \\ \ln (\frac{2}{52.5})=(-0.0143t)\ln (e)^{} \end{gathered}[/tex][tex]\ln (\frac{2}{52.5})=(-0.0143t)[/tex]t=229 years