Respuesta :

[tex]\begin{gathered} f(-10)=-19 \\ f(2)=4 \\ f(-5)=-9 \\ f(-1)=1 \\ f(8)=-5 \end{gathered}[/tex]

Explanation

[tex]f(x)f(x)=\mleft\{\begin{aligned}2x+1\text{ if x}\leq-5\text{ } \\ x^2\text{ if -5}Step 1

you need to select the correct function depending on the number

i)f(-10)

[tex]-10\leq-5,\text{ then you n}eed\text{ apply}\Rightarrow f(x)=2x+1[/tex]

Let x= -10, replacing

[tex]\begin{gathered} f(x)=2x+1 \\ f(-10)=(2\cdot-10)+1 \\ f(-10)=-20+1 \\ f(-10)=-19 \end{gathered}[/tex]

Step 2

Now

ii) f(2)

[tex]\begin{gathered} 2\text{ is in the interval} \\ -5Let

x=2,replacing

[tex]\begin{gathered} f(x)=x^2 \\ f(2)=2^2=4 \\ f(2)=4 \end{gathered}[/tex]

Step 3

iii) f(-5)

[tex]\begin{gathered} -5\text{ is smaller or equal than -5} \\ -5\leq5,\text{ then apply}\Rightarrow f(x)=2x+1 \end{gathered}[/tex]

Let

x=-5,replace

[tex]\begin{gathered} f(x)=2x+1 \\ f(-5)=(2\cdot-5)+1=-10+1 \\ f(-5)=-9 \end{gathered}[/tex]

Step 4

iv)f(-1)

[tex]\begin{gathered} -1\text{ is in the interval} \\ -5<-1<5 \\ \text{then apply}\Rightarrow f(x)=x^2 \end{gathered}[/tex]

let

x=-1,replace

[tex]\begin{gathered} f(x)=x^2 \\ f(-1)=(-1)^2 \\ f(-1)=-1\cdot-1=1 \\ f(-1)=1 \end{gathered}[/tex]

Step 5

Finally

F(8)

[tex]\begin{gathered} 8\text{ is greater or equal than 5, then apply} \\ 8\ge5\Rightarrow apply\text{ f(x)=3-x} \\ f(x)=3-x \end{gathered}[/tex]

Let

x=8,replace

[tex]\begin{gathered} f(x)=3-x \\ f(8)=3-8 \\ f(8)=-5 \end{gathered}[/tex]

I hope this helps you