Respuesta :

To solve the system by substitution, isolate one variable from one equation and substitute the expression obtained for that variable into the other equation.

[tex]\begin{gathered} x-y=-2 \\ 3x-y=2 \end{gathered}[/tex]

Isolate x from the first equation:

[tex]\begin{gathered} x-y=-2 \\ \Rightarrow x=y-2 \end{gathered}[/tex]

Substitute x=y-2 into the second equation:

[tex]\begin{gathered} 3x-y=2 \\ \Rightarrow3(y-2)-y=2 \end{gathered}[/tex]

Solve for y:

[tex]\begin{gathered} \Rightarrow3y-6-y=2 \\ \Rightarrow2y-6=2 \\ \Rightarrow2y=2+6 \\ \Rightarrow2y=8 \\ \Rightarrow y=\frac{8}{2} \\ \Rightarrow y=4 \end{gathered}[/tex]

Substitute y=4 into the expression of x to find its value:

[tex]\begin{gathered} x=y-2 \\ \Rightarrow x=4-2 \\ \Rightarrow x=2 \end{gathered}[/tex]

Therefore, the solution to the given system is:

[tex]\begin{gathered} x=2 \\ y=4 \end{gathered}[/tex]