The time taken by ball to rise is given as,
[tex]t=3.80\text{ s}[/tex]
Therefore, the total time taken to move the ball in the upward direction is calculated as,
[tex]\begin{gathered} t_0=\frac{3.80\text{ s}}{2} \\ =1.90\text{ s} \end{gathered}[/tex]
Therefore, the ball rise for 1.90 s.
The final speed of the ball can be given as,
[tex]v=u+gt[/tex]
At the maximum height the final speed of ball is zero.
Substitute the known values,
[tex]\begin{gathered} 0m/s=u+(9.8m/s^2)(1.90\text{ s)} \\ u=-(9.8m/s^2)(1.90\text{ s)} \\ =-18.62\text{ m/s} \end{gathered}[/tex]
Therefore, the initial speed of the ball is -18.62 m/s where negative sign indicates the direction of ball.
The final speed of the ball can be given as,
[tex]v^2=u^2-2gh_m[/tex]
At the maximum height the final speed is zero. Substitute the known values,
[tex]\begin{gathered} (0m/s)^2=(-18.62m/s)^2-2(9.8m/s^2)h_m \\ h_m=\frac{(-18.62m/s)^2}{2(9.8m/s)^2} \\ =17.7\text{ m} \end{gathered}[/tex]
Therefore, the maximum height of the canon is 17.7 m.