Respuesta :

Given the parallelogram ABCD

As shown: AB = 4 ft

m∠BAC = 30

m∠BDC = 104

We will find the length of the longer diagonal which will be AC

See the following figure:

The point of intersection of the diagonals = O

The opposite sides are parallel

AB || CD

m∠ABD = m∠BDC because the alternate angles are congruent

So, in the triangle AOB, the sum of the angles = 180

m∠AOB = 180 - (30+104) = 46

We will find the length of OA using the sine rule as follows:

[tex]\begin{gathered} \frac{OA}{\sin104}=\frac{AB}{\sin 46} \\ \\ OA=AB\cdot\frac{\sin104}{\sin46}=4\cdot\frac{\sin104}{\sin46}\approx5.3955 \end{gathered}[/tex]

The diagonals bisect each other

So,

[tex]AC=2\cdot OA=10.79[/tex]

The longer diagonal is AC

Rounding to the nearest tenth

So, the answer will be AC = 10.8 ft

Ver imagen EiliyahJ229355