We have to calculate the present value PV of a annuity.
The payment is yearly and it is P=60,000.
The interest rate is 5% (r=0.05), compounded annually (m=1).
The number of periods is n=20 years.
Then, we can use the formula for the present value of a annuity:
[tex]\begin{gathered} PV=P\cdot\frac{1-\frac{1}{(1+r)^n}}{r} \\ PV=60000\cdot\frac{1-\frac{1}{1.05^{20}}}{0.05} \\ PV\approx60000\cdot\frac{1-\frac{1}{2.653}}{0.05} \\ PV\approx60000\cdot\frac{1-0.377}{0.05} \\ PV\approx60000\cdot\frac{0.623}{0.05} \\ PV\approx60000\cdot12.462 \\ PV\approx747720 \end{gathered}[/tex]Answer: the company must set aside $747,720.