Respuesta :
[tex]\begin{gathered} \text{Ellipse: }\frac{(x^{}-h)^2}{a^2}+^{}\frac{(y-k)^2}{b^2}\text{ = 1} \\ \text{Hyperbola: }\frac{(x^{}-h)^2}{a^2}-^{}\frac{(y-k)^2}{b^2}\text{ = 1} \\ \text{Circle: }(x-h)^2+(y-k)^2=r^2 \\ \text{Parabola: }y=a(x-h)^2+\text{ k} \end{gathered}[/tex]
See explanation below
Explanation:An ellipse has a standard equation formula written as:
[tex]\frac{(x^{}-h)^2}{a^2}+^{}\frac{(y-k)^2}{b^2}\text{ = 1}[/tex]When the sign between the x^2 and y^2 terms is positive, then it is a ellipse
[tex]\begin{gathered} \text{example of an ellipse:} \\ \frac{(x-3)^2}{9}\text{ + }\frac{(y\text{ - 8})^2}{25}\text{ = 1} \end{gathered}[/tex]An hyperbola has a standard equation written as:
[tex]\frac{(x^{}-h)^2}{a^2}-^{}\frac{(y-k)^2}{b^2}\text{ = 1}[/tex]when the sign between the parenthesis of x^2 and y^2 terms is minus, then it is an hyperbola
[tex]\begin{gathered} \text{example of a hyperbola:} \\ \frac{x^2}{64}\text{ - }\frac{y\text{ }^2}{49}\text{ = 1} \end{gathered}[/tex]A circle has a general formula written as:
[tex]\begin{gathered} (x-h)^2+(y-k)^2=r^2 \\ \text{where vertex = (h, k)} \\ r\text{ = radius} \end{gathered}[/tex]The terms x^2 and y^2 are not divided by a constant. Also the left side of the equation represents the square of the radius
[tex]\begin{gathered} An\text{ example of a circle} \\ (x-1)^2+(y-3)^2\text{ = }10 \end{gathered}[/tex]Parabola has a vertex form of equation written as:
[tex]\begin{gathered} y=a(x-h)^2+\text{ k} \\ \text{where a = constant} \end{gathered}[/tex][tex]\begin{gathered} An\text{ example:} \\ y\text{ = 2(x - 1})^2\text{ + }3 \end{gathered}[/tex]Here, we only have term x^2, no y^2. y has an exponent of 1. Also a constant of a