Respuesta :

In general, given a quadratic function,

[tex]\begin{gathered} f(x)=ax^2+bx+c \\ a,b,c\rightarrow\text{ constants} \end{gathered}[/tex]

The end behaviors of each end of the function are given by the limits of f(x) when x approaches +/-infinite.

Therefore,

[tex]\lim_{x\to\infty}f(x)=\lim_{x\to\infty}ax^2=a\lim_{x\to\infty}x^2=a*\infty[/tex]

and

[tex]\lim_{x\to-\infty}f(x)=\lim_{x\to-\infty}ax^2=a\lim_{x\to-\infty}x^2=a*\infty[/tex]

Thus, the two limits are the same and depend on the sign of a.

Hence, the answer is True, the statement is True.