In general, given a quadratic function,
[tex]\begin{gathered} f(x)=ax^2+bx+c \\ a,b,c\rightarrow\text{ constants} \end{gathered}[/tex]The end behaviors of each end of the function are given by the limits of f(x) when x approaches +/-infinite.
Therefore,
[tex]\lim_{x\to\infty}f(x)=\lim_{x\to\infty}ax^2=a\lim_{x\to\infty}x^2=a*\infty[/tex]and
[tex]\lim_{x\to-\infty}f(x)=\lim_{x\to-\infty}ax^2=a\lim_{x\to-\infty}x^2=a*\infty[/tex]Thus, the two limits are the same and depend on the sign of a.